Victoria Reed Victoria Reed
0 Course Enrolled • 0 Course CompletedBiography
Amazon Data-Engineer-Associate日本語解説集、Data-Engineer-Associate入門知識
BONUS!!! JPTestKing Data-Engineer-Associateダンプの一部を無料でダウンロード:https://drive.google.com/open?id=1M2a3aEWziaNRM7mfjy9T4HIsKcrsnQzI
当社AmazonのData-Engineer-Associate学習教材は、複数のエクスペリエンスモードを提供できます。3つの主要なモードから選択できます:PDF、ソフトウェア、オンライン。 まず、JPTestKingPDFバージョンは印刷可能です。 第二に、Data-Engineer-Associate試験問題のソフトウェアバージョンでは、実際の試験環境をシミュレートして、試験体験をより鮮明にできます。 第三に、オンライン版はすべてのWebブラウザをサポートしているため、すべてのオペレーティングシステムで動作します。 また、Data-Engineer-Associate学習教材は、よりリラックスした学習環境でData-Engineer-Associate試験に合格するのに役立ちます。
準備の時間が限られているので、多くの受験者はあなたのペースを速めることができます。 Data-Engineer-Associate練習資料は、Data-Engineer-Associate試験の質問に対する知識理解の誤りを改善し、実際のData-Engineer-Associate試験に必要なものすべてを含みます。 Data-Engineer-Associateトレーニングガイドを選択したことを後悔することはありません。対照的に、それらは不明瞭なコンテンツを感じることなくあなたの可能性を刺激します。 Data-Engineer-Associate試験準備を取得した後、試験期間中に大きなストレスにさらされることはありません。
>> Amazon Data-Engineer-Associate日本語解説集 <<
Amazon Data-Engineer-Associate認定試験の準備をすれば勉強方法を教える
日常から離れて理想的な生活を求めるには、職場で高い得点を獲得し、試合に勝つために余分なスキルを習得する必要があります。同時に、社会的競争は現代の科学、技術、ビジネスの発展を刺激し、Data-Engineer-Associate試験に対する社会の認識に革命をもたらし、人々の生活の質に影響を与えます。 Data-Engineer-Associate試験問題は、あなたの夢をかなえるのに役立ちます。さらに、Data-Engineer-Associateガイドトレントに関する詳細情報を提供するWebサイトにアクセスできます。
Amazon AWS Certified Data Engineer - Associate (DEA-C01) 認定 Data-Engineer-Associate 試験問題 (Q38-Q43):
質問 # 38
A company has an Amazon Redshift data warehouse that users access by using a variety of IAM roles. More than 100 users access the data warehouse every day.
The company wants to control user access to the objects based on each user's job role, permissions, and how sensitive the data is.
Which solution will meet these requirements?
- A. Use dynamic data masking policies in Amazon Redshift.
- B. Use the role-based access control (RBAC) feature of Amazon Redshift.
- C. Use the row-level security (RLS) feature of Amazon Redshift.
- D. Use the column-level security (CLS) feature of Amazon Redshift.
正解:B
解説:
Amazon Redshift supports Role-Based Access Control (RBAC) to manage access to database objects.
RBAC allows administrators to create roles for job functions and assign privileges at the schema, table, or column level based on data sensitivity and user roles.
"RBAC in Amazon Redshift helps manage permissions more efficiently at scale by assigning users to roles that reflect their job function. It simplifies user management and secures access based on job role and data sensitivity."
- Ace the AWS Certified Data Engineer - Associate Certification - version 2 - apple.pdf RBAC is preferred over RLS or CLS alone because it offers a more comprehensive and scalable solution across multiple users and permissions.
質問 # 39
A media company wants to improve a system that recommends media content to customer based on user behavior and preferences. To improve the recommendation system, the company needs to incorporate insights from third-party datasets into the company's existing analytics platform.
The company wants to minimize the effort and time required to incorporate third-party datasets.
Which solution will meet these requirements with the LEAST operational overhead?
- A. Use Amazon Kinesis Data Streams to access and integrate third-party datasets from AWS CodeCommit repositories.
- B. Use Amazon Kinesis Data Streams to access and integrate third-party datasets from Amazon Elastic Container Registry (Amazon ECR).
- C. Use API calls to access and integrate third-party datasets from AWS Data Exchange.
- D. Use API calls to access and integrate third-party datasets from AWS
正解:C
解説:
AWS Data Exchange is a service that makes it easy to find, subscribe to, and use third-party data in the cloud.
It provides a secure and reliable way to access and integrate data from various sources, such as data providers, public datasets, or AWS services. Using AWS Data Exchange, you can browse and subscribe to data products that suit your needs, and then use API calls or the AWS Management Console to export the data to Amazon S3, where you can use it with your existing analytics platform. This solution minimizes the effort and time required to incorporate third-party datasets, as you do not need to set up and manage data pipelines, storage, or access controls. You also benefit from the data quality and freshness provided by the data providers, who can update their data products as frequently as needed12.
The other options are not optimal for the following reasons:
* B. Use API calls to access and integrate third-party datasets from AWS. This option is vague and does not specify which AWS service or feature is used to access and integrate third-party datasets. AWS offers a variety of services and features that can help with data ingestion, processing, and analysis, but not all of them are suitable for the given scenario. For example, AWS Glue is a serverless data integration service that can help you discover, prepare, and combine data from various sources, but it requires you to create and run data extraction, transformation, and loading (ETL) jobs, which can add operational overhead3.
* C. Use Amazon Kinesis Data Streams to access and integrate third-party datasets from AWS CodeCommit repositories. This option is not feasible, as AWS CodeCommit is a source control service that hosts secure Git-based repositories, not a data source that can be accessed by Amazon Kinesis Data Streams. Amazon Kinesis Data Streams is a service that enables you to capture, process, and analyze data streams in real time, such as clickstream data, application logs, or IoT telemetry. It does not support accessing and integrating data from AWS CodeCommit repositories, which are meant for storing and managing code, not data .
* D. Use Amazon Kinesis Data Streams to access and integrate third-party datasets from Amazon Elastic Container Registry (Amazon ECR). This option is also not feasible, as Amazon ECR is a fully managed container registry service that stores, manages, and deploys container images, not a data source that can be accessed by Amazon Kinesis Data Streams. Amazon Kinesis Data Streams does not support accessing and integrating data from Amazon ECR, which is meant for storing and managing container images, not data .
References:
* 1: AWS Data Exchange User Guide
* 2: AWS Data Exchange FAQs
* 3: AWS Glue Developer Guide
* : AWS CodeCommit User Guide
* : Amazon Kinesis Data Streams Developer Guide
* : Amazon Elastic Container Registry User Guide
* : Build a Continuous Delivery Pipeline for Your Container Images with Amazon ECR as Source
質問 # 40
A company has used an Amazon Redshift table that is named Orders for 6 months. The company performs weekly updates and deletes on the table. The table has an interleaved sort key on a column that contains AWS Regions.
The company wants to reclaim disk space so that the company will not run out of storage space. The company also wants to analyze the sort key column.
Which Amazon Redshift command will meet these requirements?
- A. VACUUM SORT ONLY Orders
- B. VACUUM FULL Orders
- C. VACUUM DELETE ONLY Orders
- D. VACUUM REINDEX Orders
正解:D
解説:
Amazon Redshift is a fully managed, petabyte-scale data warehouse service that enables fast and cost-effective analysis of large volumes of data. Amazon Redshift uses columnar storage, compression, and zone maps to optimize the storage and performance of data. However, over time, as data is inserted, updated, or deleted, the physical storage of data can become fragmented, resulting in wasted disk space and degraded query performance. To address this issue, Amazon Redshift provides the VACUUM command, which reclaims disk space and resorts rows in either a specified table or all tables in the current schema1.
The VACUUM command has four options: FULL, DELETE ONLY, SORT ONLY, and REINDEX. The option that best meets the requirements of the question is VACUUM REINDEX, which re-sorts the rows in a table that has an interleaved sort key and rewritesthe table to a new location on disk. An interleaved sort key is a type of sort key that gives equal weight to each column in the sort key, and stores the rows in a way that optimizes the performance of queries that filter by multiple columns in the sort key. However, as data is added or changed, the interleaved sort order can become skewed, resulting in suboptimal query performance. The VACUUM REINDEX option restores the optimal interleaved sort order and reclaims disk space by removing deleted rows. This option also analyzes the sort key column and updates the table statistics, which are used by the query optimizer to generate the most efficient query execution plan23.
The other options are not optimal for the following reasons:
A: VACUUM FULL Orders. This option reclaims disk space by removing deleted rows and resorts the entire table. However, this option is not suitable for tables that have an interleaved sort key, as it does not restore the optimal interleaved sort order. Moreover, this option is the most resource-intensive and time-consuming, as it rewrites the entire table to a new location on disk.
B: VACUUM DELETE ONLY Orders. This option reclaims disk space by removing deleted rows, but does not resort the table. This option is not suitable for tables that have any sort key, as it does not improve the query performance by restoring the sort order. Moreover, this option does not analyze the sort key column and update the table statistics.
D: VACUUM SORT ONLY Orders. This option resorts the entire table, but does not reclaim disk space by removing deleted rows. This option is not suitable for tables that have an interleaved sort key, as it does not restore the optimal interleaved sort order. Moreover, this option does not analyze the sort key column and update the table statistics.
References:
1: Amazon Redshift VACUUM
2: Amazon Redshift Interleaved Sorting
3: Amazon Redshift ANALYZE
質問 # 41
A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling betweenone to five task nodes for the company's long- running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.
When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.
The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.
Which solution will meet these requirements MOST cost-effectively?
- A. Reduce the scaling cooldown period for the provisioned EMR cluster.
- B. Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.
- C. Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.
- D. Increase the maximum number of task nodes for EMR managed scaling to 10.
正解:C
解説:
The company's Apache Spark ETL job on Amazon EMR uses high CPU but low memory, meaning that compute-optimized EC2 instanceswould be the most cost-effective choice. These instances are designed for high-performance compute applications, where CPU usage is high, but memory needs are minimal, which is exactly the case here.
* Compute Optimized Instances:
* Compute-optimized instances, such as the C5 series, provide a higher ratio of CPU to memory, which is more suitable for jobs with high CPU usage and relatively low memory consumption.
* Switching from general-purpose EC2 instances to compute-optimized instances canreduce costs while improving performance, as these instances are optimized for workloads like Spark jobs that perform a lot of computation.
Reference:Amazon EC2 Compute Optimized Instances
Managed Scaling: The EMR cluster's scaling is currently managed between 1 and 5 nodes, so changing the instance type will leverage the current scaling strategy but optimize it for the workload.
Alternatives Considered:
A (Increase task nodes to 10): Increasing the number of task nodes would increase costs without necessarily improving performance. Since memory usageis low, the bottleneck is more likely the CPU, which compute- optimized instances can handle better.
B (Memory optimized instances): Memory-optimized instances are not suitable since the current job is CPU- bound, and memory usage remains low (under 30%).
D (Reduce scaling cooldown): This could marginally improve scaling speed but does not address the need for cost optimization and improved CPU performance.
References:
Amazon EMR Cluster Optimization
Compute Optimized EC2 Instances
質問 # 42
A company wants to analyze sales records that the company stores in a MySQL database. The company wants to correlate the records with sales opportunities identified by Salesforce.
The company receives 2 GB erf sales records every day. The company has 100 GB of identified sales opportunities. A data engineer needs to develop a process that will analyze and correlate sales records and sales opportunities. The process must run once each night.
Which solution will meet these requirements with the LEAST operational overhead?
- A. Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use AWS Glue to fetch sales records from the MySQL database. Correlate the sales records with the sales opportunities. Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to orchestrate the process.
- B. Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use Amazon Kinesis Data Streams to fetch sales records from the MySQL database. Use Amazon Managed Service for Apache Flink to correlate the datasets. Use AWS Step Functions to orchestrate the process.
- C. Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use AWS Glue to fetch sales records from the MySQL database. Correlate the sales records with sales opportunities. Use AWS Step Functions to orchestrate the process.
- D. Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to fetch both datasets. Use AWS Lambda functions to correlate the datasets. Use AWS Step Functions to orchestrate the process.
正解:C
解説:
* Problem Analysis:
* The company processes 2 GB of daily sales records and 100 GB of Salesforce sales opportunities.
* The goal is to analyze and correlate the two datasets with low operational overhead.
* The process must run once nightly.
* Key Considerations:
* Amazon AppFlow simplifies data integration with Salesforce.
* AWS Glue can extract data from MySQL and perform ETL operations.
* Step Functions can orchestrate workflows with minimal manual intervention.
* Apache Airflow and Flink add complexity, which conflicts with the requirement for low operational overhead.
* Solution Analysis:
* Option A: MWAA + Lambda + Step Functions
* Requires custom Lambda code for dataset correlation, increasing development and operational complexity.
* Option B: AppFlow + Glue + MWAA
* MWAA adds orchestration overhead compared to the simpler Step Functions.
* Option C: AppFlow + Glue + Step Functions
* AppFlow fetches Salesforce data, Glue extracts MySQL data, and Step Functions orchestrate the entire process.
* Minimal setup and operational overhead, making it the best choice.
* Option D: AppFlow + Kinesis + Flink + Step Functions
* Using Kinesis and Flink for batch processing introduces unnecessary complexity.
* Final Recommendation:
* Use Amazon AppFlow to fetch Salesforce data, AWS Glue to process MySQL data, and Step Functions for orchestration.
:
Amazon AppFlow Overview
AWS Glue ETL Documentation
AWS Step Functions
質問 # 43
......
Data-Engineer-Associate準備資料のガイダンスの下で、さまざまな学生に合わせた試験の焦点を提供し、例と図およびIT専門家を追加することで長くて退屈な参考書を簡素化できるため、より生産的かつ効率的になることができます変更できない問題を回避するために、Data-Engineer-Associateガイドトレントを毎日更新します。そして、あなたはあなたの日常生活の中で自分自身のために時刻表やto-soリストを設定する方法についてData-Engineer-Associate研究急流を勉強することができます。したがって、Data-Engineer-Associate学習教材の学習過程で喜びを見つけます。
Data-Engineer-Associate入門知識: https://www.jptestking.com/Data-Engineer-Associate-exam.html
Data-Engineer-AssociateのAWS Certified Data Engineer - Associate (DEA-C01)学習ツールを目指しているお客様は世界中のさまざまな国から来ており、間違いなく時間差があるため、Data-Engineer-Associateトレーニングガイドで1日24時間、7日間、思いやりのあるJPTestKingオンラインアフターサービスを提供します 週に数日、いつでもどこでも気軽にご連絡ください、Amazon Data-Engineer-Associate日本語解説集 毎日当社のウェブサイト上の多数のバイヤーによって裏付けることができます、Amazon Data-Engineer-Associate日本語解説集 そうすれば、あなたは段階的に社会的影響力と成功の大きなレベルに前進するチャンスがたくさんあることに気付くでしょう、さらに重要なことは、Data-Engineer-Associate試験に合格し、夢のData-Engineer-Associate認定を取得できることです。
天から舞い降りた者の顔はとても冷たく美しかった、今日が誕生日なんだって、Data-Engineer-AssociateのAWS Certified Data Engineer - Associate (DEA-C01)学習ツールを目指しているお客様は世界中のさまざまな国から来ており、間違いなく時間差があるため、Data-Engineer-Associateトレーニングガイドで1日24時間、7日間、思いやりのあるJPTestKingオンラインアフターサービスを提供します 週に数日、いつでもどこでも気軽にご連絡ください。
試験の準備方法-検証するData-Engineer-Associate日本語解説集試験-100%合格率のData-Engineer-Associate入門知識
毎日当社のウェブサイト上の多数のバイヤーによって裏付けることができます、そうすれば、あなたは段階的に社会的影響力と成功の大きなレベルに前進するチャンスがたくさんあることに気付くでしょう、さらに重要なことは、Data-Engineer-Associate試験に合格し、夢のData-Engineer-Associate認定を取得できることです。
したがって、資格試験の重要性を通してそれを確認できます。
- 完璧なData-Engineer-Associate|権威のあるData-Engineer-Associate日本語解説集試験|試験の準備方法AWS Certified Data Engineer - Associate (DEA-C01)入門知識 🙄 ➠ www.it-passports.com 🠰を入力して{ Data-Engineer-Associate }を検索し、無料でダウンロードしてくださいData-Engineer-Associate資格取得
- Data-Engineer-Associateブロンズ教材 🙊 Data-Engineer-Associate日本語サンプル 🧄 Data-Engineer-Associate学習体験談 🚼 今すぐ( www.goshiken.com )で⇛ Data-Engineer-Associate ⇚を検索して、無料でダウンロードしてくださいData-Engineer-Associateブロンズ教材
- Data-Engineer-Associate合格記 🧄 Data-Engineer-Associate最新知識 ⛺ Data-Engineer-Associate資格取得 🍠 ウェブサイト➡ www.topexam.jp ️⬅️から⮆ Data-Engineer-Associate ⮄を開いて検索し、無料でダウンロードしてくださいData-Engineer-Associate試験時間
- Data-Engineer-Associate合格記 📉 Data-Engineer-Associate試験内容 📗 Data-Engineer-Associateトレーニング資料 🐦 ➥ www.goshiken.com 🡄の無料ダウンロード▛ Data-Engineer-Associate ▟ページが開きますData-Engineer-Associate合格記
- Data-Engineer-Associate関連問題資料 🩸 Data-Engineer-Associate復習解答例 ✔️ Data-Engineer-Associate関連問題資料 ❕ ▶ www.passtest.jp ◀は、➥ Data-Engineer-Associate 🡄を無料でダウンロードするのに最適なサイトですData-Engineer-Associate関連問題資料
- Data-Engineer-Associate試験 🔒 Data-Engineer-Associateファンデーション 🧦 Data-Engineer-Associate最新知識 🧍 ウェブサイト☀ www.goshiken.com ️☀️を開き、▷ Data-Engineer-Associate ◁を検索して無料でダウンロードしてくださいData-Engineer-Associate資格練習
- 真実的なData-Engineer-Associate日本語解説集一回合格-権威のあるData-Engineer-Associate入門知識 🥐 「 www.goshiken.com 」から簡単に「 Data-Engineer-Associate 」を無料でダウンロードできますData-Engineer-Associate試験
- 完璧なData-Engineer-Associate|権威のあるData-Engineer-Associate日本語解説集試験|試験の準備方法AWS Certified Data Engineer - Associate (DEA-C01)入門知識 🐾 ( Data-Engineer-Associate )を無料でダウンロード▷ www.goshiken.com ◁ウェブサイトを入力するだけData-Engineer-Associate資格取得
- Data-Engineer-Associate最新知識 🏣 Data-Engineer-Associateトレーニング資料 🟫 Data-Engineer-Associate試験時間 😏 ✔ jp.fast2test.com ️✔️に移動し、▷ Data-Engineer-Associate ◁を検索して無料でダウンロードしてくださいData-Engineer-Associate合格受験記
- Data-Engineer-Associate試験の準備方法|ハイパスレートのData-Engineer-Associate日本語解説集試験|実際的なAWS Certified Data Engineer - Associate (DEA-C01)入門知識 🏄 ➠ www.goshiken.com 🠰を開いて[ Data-Engineer-Associate ]を検索し、試験資料を無料でダウンロードしてくださいData-Engineer-Associate試験時間
- 試験の準備方法-完璧なData-Engineer-Associate日本語解説集試験-有効的なData-Engineer-Associate入門知識 🍐 “ www.pass4test.jp ”を開き、⮆ Data-Engineer-Associate ⮄を入力して、無料でダウンロードしてくださいData-Engineer-Associate最新知識
- iastonline.com, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, fujia.s108-164.myverydz.cn, study.stcs.edu.np, tmortoza.com, thehvacademy.com, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, Disposable vapes
P.S.JPTestKingがGoogle Driveで共有している無料の2025 Amazon Data-Engineer-Associateダンプ:https://drive.google.com/open?id=1M2a3aEWziaNRM7mfjy9T4HIsKcrsnQzI
